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Alternative titles

The power of models, the perils of programs
A plea for shorelines of tractability
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Evolution

Change over generations
Random mutations
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Individual Evolution

Cells accumulate mutations throughout the entire life
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Character-based evolution

A possible rule
Each character is gained exactly
once in the tree.

Model of evolution
Set of rules
Set of constraints
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Perfect Phylogeny Problem

Input
A J H L V

Scorpion 0 0 0 0 0
Lamprey 0 0 0 0 1
Tuna 0 1 0 0 1
Salamander 0 1 0 1 1
Turtle 1 1 0 1 1
Leopard 1 1 1 1 1

Problem
Input: a binary matrix M
Output: a tree T explaining M, if it exists
each edge of T corresponds to a character gain
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Perfect Phylogeny Problem
A J H L V

Scorpion 0 0 0 0 0
Lamprey 0 0 0 0 1
Tuna 0 1 0 0 1
Salamander 0 1 0 1 1
Turtle 1 1 0 1 1
Leopard 1 1 1 1 1

Linear time algorithm (Gusfield, Networks 1991)
1 Sort the columns by decreasing number of 1s
2 Radix sort the rows
3 Build the tree
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Multi state character evolution

Progression of states
0: Absent

−→ missing

1: Present

−→ present

2: Dormant

−→ missing

Transitions 012 model
0

1
2

(Tooth Induction in Chick Epithelium: Expression of Quiescent Genes for Enamel Synthesis; Kollar, Fisher; Science 1980)
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Losing characters

A possible rule
Each character can be lost (once).
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Convergent evolution

illustration of convergent evolution by craigpemberton is marked with CC BY-SA 2.0.
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Characters and States

Change of state
A character c is gained⇒ the state of c changes from 0 to 1 in an edge
A character c is lost⇒ the state of c changes from 1 to 0 in an edge
(backmutation)
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Models of Evolution

What is a model?

How many times can we gain a character?
How many times can we lose a character?

When is a model useful?

Q1: Does it exist?
sometimes
always, but we can prioritize

Q2: How fast can we answer Q1?
Linear time
Not brute force
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Dollo

Losing a character is easier than gaining a character.

Dollo models: character are gained once
Gained once = Infinite sites assumption

Dollo(0) aka perfect phylogeny

linear time
Dollo(1) aka persistent phylogeny

???

Dollo(k )

NP-hard

Dollo(∞) aka Dollo

always trivially possible
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Tumor Evolution

Different clones→ different fractions of the tumor
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Tumor Evolution

Single cell sequencing data
Very Noisy — Missing data, many false negative
No mixture

SCITE
Markov Chain Monte Carlo (MCMC) maximum likelihood tree search
Relies on the Perfect Phylogeny model
Produces solutions respect the Infinite Site Assumption

Tree inference for single-cell data. Jahn K., Kuipers J., and Beerenwinkel N., Genome Biology, 2016.
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Attack to the infinite site assumption!

“Our results refute the general validity of the infinite sites assumption”
“6 childhood acute lymphoblastic leukemia (ALL) patients . . . Our test returns
extremely high BFs1 in the range of 105 to 1015 . . . for all samples apart from
patient 5, the recurrent mutation is a back mutation”

From: A statistical test on single-cell data reveals widespread recurrent mutations
in tumor evolution, Kuipers et al., BioRxiv, 2016

1BF: Bayes Factor. It is the ratio of the likelihoods of seeing the actual data given the infinite
site assumption and the finite site assumption
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Back mutations for the win!

“infer the phylogeny for individual patients using the Dollo parsimony method
and a branch and bound exhaustive search for the best phylogenetic
reconstruction”
“In genomically unstable cancers, deletion of large chromosomal segments is
common”
“large deletions on several branches of a tree can span a shared locus, and
thus a given mutation may be deleted independently multiple times”

From: Brown, D. et al. Phylogenetic analysis of metastatic progression in breast
cancer using somatic mutations and copy number aberrations. Nat. Commun. 8,
14944 doi: 10.1038/ncomms14944 (2017)
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Persistent Phylogeny
Instance

M c1 c2 c3 c4 c5 c6

s1 0 0 0 1 0 0
s2 0 0 1 1 1 1
s3 0 1 1 0 0 0
s4 1 1 0 0 0 0
s5 1 1 1 0 1 0
s6 0 1 1 1 1 0

Problem
Input: a binary matrix M
Output: a persistent phylogeny
consistent with M, if it exists

s1

s2

c6+

s6

s5

s3

c−1
s4

c−3

c−5

c+
1

c−4

c+
2

c+
3 , c

+
5

c+
4
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Red-black graph: trimming choices

Instance
M c1 c2 c3

s1 0 0 1
s2 0 1 1
s3 1 1 0
s4 1 1 1

Extended matrix
Me c+

1 c−1 c+
2 c−2 c+

3 c−3
s1 ? ? ? ? 1 0
s2 ? ? 1 0 1 0
s3 1 0 1 0 ? ?
s4 1 0 1 0 1 0
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ILP approaches

Variables
Linear constraints
Linear objective function
Excellent tools
Exploration vs. Exploitation
Always finds the optimal solution

if you have a lot of time
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ILP approaches
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Perfect Phylogeny: ILP approach

max whatever subject to (1)
B(p,q,0,1) ≥ M(c,q) −M(c,p) ∀c ∈ C , p,q ∈ S (2)
B(p,q,1,0) ≥ M(c,p) −M(c,q) ∀c ∈ C , p,q ∈ S (3)

B(p,q,1,1) ≥ E(c,p) + E(c,q) − 1 ∀c ∈ C , p,q ∈ S (4)
B(p,q,0,1) + B(p,q,1,0) + B(p,q,1,1) ≤ 2 ∀p,q ∈ S (5)
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Persistent Phylogeny: ILP approach

conjugate characters c+, c−

extended matrix Me

M[s, c] = 1⇒ Me[s, c+] = 1, Me[s, c−] = 0
M[s, c] = 0⇒ Me[s, c+] = Me[s, c−]
M has a persistent phylogeny iff there exists Me with perfect phylogeny
(Bonizzoni et al., Theor. Comp. Sci., 2012)
ILP for perfect phylogeny (Gusfield et al., COCOON, 2007)
ILP for persistent phylogeny (Gusfield, ACM BCB, 2015)
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Persistent Phylogeny: ILP approach

max whatever subject to (6)
I(c,m) = E(c,m+) − E(c,m−) ∀c ∈ C ,m ∈ M (7)

B(p,q,0,1) ≥ E(c,q) − E(c,p) ∀c ∈ C , p,q ∈ M∗ (8)
B(p,q,1,0) ≥ E(c,p) − E(c,q) ∀c ∈ C , p,q ∈ M∗ (9)

B(p,q,1,1) ≥ E(c,p) + E(c,q) − 1 ∀c ∈ C , p,q ∈ M∗ (10)
B(p,q,0,1) + B(p,q,1,0) + B(p,q,1,1) ≤ 2 ∀p,q ∈ M∗ (11)
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Single cell tumor phylogeny

max
∑
c∈C

∑
m∈M

logw(c,m), subject to (12)

F(c,m) = E(c,m+) −
∑
i≤k

E(c,m−i ) ∀c ∈ C ,m ∈ M (13)

w(c,m) = (1 − α)F(c,m) + β (1 − F(c,m)) if I(c,m) = 1 (14)
w(c,m) = αF(c,m) + (1 − β) (1 − F(c,m)) if I(c,m) = 0 (15)

B(p,q,0,1) ≥ E(c,q) − E(c,p) ∀c ∈ C , p,q ∈ M∗ (16)
B(p,q,1,0) ≥ E(c,p) − E(c,q) ∀c ∈ C , p,q ∈ M∗ (17)

B(p,q,1,1) ≥ E(c,p) + E(c,q) − 1 ∀c ∈ C , p,q ∈ M∗ (18)
B(p,q,0,1) + B(p,q,1,0) + B(p,q,1,1) ≤ 2 ∀p,q ∈ M∗ (19)

B(·, ·, ·, ·),F(·, ·),E(·, ·) ∈ {0,1}
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Tumor Evolution

Approaches
Persistent Phylogeny
(Ciccolella et al., BMC
Bioinformatics, 2020)
ILP
Also Dollo(k )

Germline

SAMHD1

EXOC6B

NAMPTL

SLC12A1

PLA2G16

DAZAP1

NAMPTL-

LRRC16A

GHDC

EXOC6B-

NOD1 BCL2L13

GPR158

COL24A1

HMCN1

OCA2

MAP2K1

KLHDC2
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SASC — Simulated Annealing

The simulated annealing idea
1 Start from a phylogeny T
2 Tweak T to obtain T1

3 Accept T1 if it is better than T
4 Accept T1 with probability p it is worse than T
5 Rinse and repeat

Probability p
decreases with time
smaller when T and T1 are different
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Tweak 1: Prune and Reattach
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Tweak 2: Swap node labels
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Tweak 3: Add a deletion
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Tweak 4: Remove a deletion
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Results

Data
Single-cell RNA-seq enables
comprehensive tumour and immune
cell profiling in primary breast cancer.
Chung et al., Nature Communications,
2017.

Paper
Ciccolella et al., Inferring Cancer
Progression from Single-cell
Sequencing while Allowing Mutation
Losses, Bioinformatics, 2020.
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Problems

1 Find a Persistent Phylogeny with minimum number of backmutations in
polynomial time

2 Efficiently compute a Persistent Phylogeny explaining a set of samples
3 Efficiently compute a Dollo(k ) Phylogeny explaining a set of samples
4 Compare different phylogenies
5 Amalgamate different phylogenies
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BIAS — Bioinformatics and Experimental Algorithmics

THANKS!

https://www.algolab.eu

Thanks to:
Giulia Bernardini

Paola Bonizzoni

Simone Ciccolella

Luca Denti

Iman Hajirasouliha

Murray Patterson

Marco Previtali

Camir Ricketts

Dana Silverbush

Mauricio Soto

Raffaella Rizzi
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Attributions

Some material has been taken from:
Trevor Pugh (https://bioinformatics.ca/workshops/2016/
bioinformatics-cancer-genomics-2016)
”File:Simplex-method-3-dimensions.png” by User:Sdo is marked with CC
BY-SA 3.0.

This work is licensed under a Creative Commons “At-
tribution 4.0 International” license.
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