Computational Aspects of Models of Evolution

Gianluca Della Vedova

Dipartimento di Informatica, Sistemistica e Comunicazione Università degli Studi di Milano–Bicocca

GGI Seminar Series, virtually at UTHSC March 11th, 2022 The power of models, the perils of programsA plea for shorelines of tractability

Evolution

Change over generationsRandom mutations

Gianluca Della Vedova Computational Aspects of Models of Evolution

Individual Evolution

Cells accumulate mutations throughout the entire life

Gianluca Della Vedova Computational Aspects of Models of Evolution

Character-based evolution

A possible rule

Each character is gained **exactly once** in the tree.

Model of evolution
Set of rules
Set of constraints

Perfect Phylogeny Problem

Problem

- Input: a binary matrix M
- Output: a tree *T* explaining *M*, if it exists
- each edge of T corresponds to a character gain

Perfect Phylogeny Problem

	Α	J	Н	L	V
Scorpion	0	0	0	0	0
Lamprey	0	0	0	0	1
Tuna	0	1	0	0	1
Salamander	0	1	0	1	1
Turtle	1	1	0	1	1
Leopard	1	1	1	1	1

Linear time algorithm (Gusfield, Networks 1991)

- Sort the columns by decreasing number of 1s
- 2 Radix sort the rows
- 3 Build the tree

Losing characters

A possible rule

Each character can be lost (once).

ianluca Della Vedova Computational Aspects of Models of Evolution

Convergent evolution

illustration of convergent evolution by craigpemberton is marked with CC BY-SA 2.0.

Gianluca Della Vedova Computational Aspects of Models of Evolution

Characters and States

Change of state

A character c is gained ⇒ the state of c changes from 0 to 1 in an edge
 A character c is lost ⇒ the state of c changes from 1 to 0 in an edge (backmutation)

What is a model?

When is a model useful?

Gianluca Della Vedova Computational Aspects of Models of Evolution

What is a model?

How many times can we gain a character?

How many times can we lose a character?

When is a model useful?

What is a model?

How many times can we gain a character?

How many times can we lose a character?

When is a model useful? Q1: Does it exist?

What is a model?

How many times can we gain a character?

How many times can we lose a character?

When is a model useful?

Q1: Does it exist?

- sometimes
- always, but we can prioritize
- Q2: How fast can we answer Q1?

What is a model?

How many times can we gain a character?

How many times can we lose a character?

When is a model useful?

Q1: Does it exist?

- sometimes
- always, but we can prioritize
- Q2: How fast can we answer Q1?

What is a model?

How many times can we gain a character?

How many times can we lose a character?

When is a model useful?

Q1: Does it exist?

- sometimes
- always, but we can prioritize
- Q2: How fast can we answer Q1?
 - Linear time
 - Not brute force

Losing a character is easier than gaining a character.

Dollo models: character are gained once

Gained once = Infinite sites assumption

Dollo(0) aka perfect phylogeny

Losing a character is easier than gaining a character.

Dollo models: character are gained once

- Dollo(0) aka perfect phylogeny
- Dollo(1) aka persistent phylogeny

Losing a character is easier than gaining a character.

Dollo models: character are gained once

- Dollo(0) aka perfect phylogeny
- Dollo(1) aka persistent phylogeny
- Dollo(k)

Losing a character is easier than gaining a character.

Dollo models: character are gained once

- Dollo(0) aka perfect phylogeny
- Dollo(1) aka persistent phylogeny
- Dollo(k)
- Dollo(∞) aka Dollo

Losing a character is easier than gaining a character.

Dollo models: character are gained once

- Dollo(0) aka perfect phylogeny linear line
- Dollo(1) aka persistent phylogeny
- Dollo(k)
- Dollo(∞) aka Dollo

Losing a character is easier than gaining a character.

Dollo models: character are gained once

- Dollo(0) aka perfect phylogeny linear line
- Dollo(1) aka persistent phylogeny
- Dollo(k)
- Dollo(∞) aka Dollo always trivially possible

Losing a character is easier than gaining a character.

Dollo models: character are gained once

- Dollo(0) aka perfect phylogeny linear time
- Dollo(1) aka persistent phylogeny
- Dollo(k) NP-hard
- Dollo(∞) aka Dollo always trivially possible

Losing a character is easier than gaining a character.

Dollo models: character are gained once

- Dollo(0) aka perfect phylogeny linear time
- Dollo(1) aka persistent phylogeny ???
- Dollo(k) NP-hard
- Dollo(∞) aka Dollo always trivially possible

Different clones → different fractions of the tumor

Gianluca Della Vedova Computational Aspects of Models of Evolution

Single cell sequencing data

Very Noisy — Missing data, many false negative
 No mixture

Single cell sequencing data

Very Noisy — Missing data, many false negative
 No mixture

SCITE

- Markov Chain Monte Carlo (MCMC) maximum likelihood tree search
- Relies on the Perfect Phylogeny model
- Produces solutions respect the Infinite Site Assumption
- Tree inference for single-cell data. Jahn K., Kuipers J., and Beerenwinkel N., Genome Biology, 2016.

Attack to the infinite site assumption!

- "Our results refute the general validity of the infinite sites assumption"
- "6 childhood acute lymphoblastic leukemia (ALL) patients ... Our test returns extremely high BFs¹ in the range of 10⁵ to 10¹⁵ ... for all samples apart from patient 5, the recurrent mutation is a back mutation"
- From: A statistical test on single-cell data reveals widespread recurrent mutations in tumor evolution, Kuipers et al., BioRxiv, 2016

¹BF: Bayes Factor. It is the ratio of the likelihoods of seeing the actual data given the infinite site assumption and the finite site assumption

Back mutations for the win!

- "infer the phylogeny for individual patients using the Dollo parsimony method and a branch and bound exhaustive search for the best phylogenetic reconstruction"
- "In genomically unstable cancers, deletion of large chromosomal segments is common"
- "large deletions on several branches of a tree can span a shared locus, and thus a given mutation may be deleted independently multiple times"

From: Brown, D. et al. Phylogenetic analysis of metastatic progression in breast cancer using somatic mutations and copy number aberrations. Nat. Commun. 8, 14944 doi: 10.1038/ncomms14944 (2017)

Persistent Phylogeny

Problem

Input: a binary matrix *M* Output: a persistent phylogeny consistent with *M*, if it exists

М	<i>C</i> ₁	C 2	<i>C</i> 3				
<i>S</i> ₁	0	0	1				
S 2	0	1	1				
S 3	1	1	0				
S 4	1	1	1				

Extended matrix									
	M _e	c_1^+	<i>C</i> ₁ ⁻	c_2^+	c_2^-	c_3^+	C_3^-		
_	<i>S</i> ₁	?	?	?	?	1	0		
	S 2	?	?	1	0	1	0		
	S 3	1	0	1	0	?	?		
	S 4	1	0	1	0	1	0		

М	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> 3				
<i>S</i> ₁	0	0	1				
S 2	0	1	1				
S 3	1	1	0				
S 4	1	1	1				

Extended matrix									
M _e	$ c_1^+ $	C_1^-	c_2^+	C_2^-	c_3^+	C_3^-			
<i>S</i> ₁	?	?	?	?	1	0			
S 2	?	?	1	0	1	0			
S 3	1	0	1	0	?	?			
S 4	1	0	1	0	1	0			

М	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> 3				
<i>S</i> ₁	0	0	1				
S 2	0	1	1				
S 3	1	1	0				
S 4	1	1	1				

	Extended matrix								
	M _e	c_1^+	c_1^-	c_2^+	c_2^-	c_3^+	c_3^-		
_	<i>S</i> ₁	?	?	0	0	1	0		
	S 2	?	?	1	0	1	0		
	S 3	1	0	1	0	?	?		
	S 4	1	0	1	0	1	0		

М	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> 3				
<i>S</i> ₁	0	0	1				
S 2	0	1	1				
S 3	1	1	0				
S 4	1	1	1				

	Extended matrix								
	M _e	c_1^+	c_1^-	c_2^+	c_2^-	c_3^+	c_3^-		
_	<i>S</i> ₁	?	?	1	1	1	0		
	S 2	?	?	1	0	1	0		
	S 3	1	0	1	0	?	?		
	S 4	1	0	1	0	1	0		

ILP approaches

- Variables
- Linear constraints
- Linear objective function
- Excellent tools
- Exploration vs. Exploitation
- Always finds the optimal solution

ILP approaches

- Variables
- Linear constraints
- Linear objective function
- Excellent tools
- Exploration vs. Exploitation
- Always finds the optimal solution if you have a lot of time

ILP approaches

Perfect Phylogeny: ILP approach

 $\begin{array}{ll} \max \ \text{whatever subject to} & (1) \\ B(p,q,0,1) \geq M(c,q) - M(c,p) & \forall c \in C, p,q \in S \\ B(p,q,1,0) \geq M(c,p) - M(c,q) & \forall c \in C, p,q \in S \\ B(p,q,1,1) \geq E(c,p) + E(c,q) - 1 & \forall c \in C, p,q \in S \\ B(p,q,0,1) + B(p,q,1,0) + B(p,q,1,1) \leq 2 & \forall p,q \in S \end{array}$

Persistent Phylogeny: ILP approach

conjugate characters c^+ , c^-

extended matrix M_e

- $\blacksquare \ M[s,c] = 1 \Rightarrow M_e[s,c^+] = 1, \ M_e[s,c^-] = 0$
- $\blacksquare M[s,c] = 0 \Rightarrow M_e[s,c^+] = M_e[s,c^-]$
- *M* has a persistent phylogeny iff there exists *M_e* with perfect phylogeny (Bonizzoni et al., Theor. Comp. Sci., 2012)
- ILP for perfect phylogeny (Gusfield et al., COCOON, 2007)
- ILP for persistent phylogeny (Gusfield, ACM BCB, 2015)

Persistent Phylogeny: ILP approach

 $\begin{array}{ll} \max \ \text{whatever subject to} & (6) \\ l(c,m) = E(c,m^+) - E(c,m^-) \ \forall c \in C, m \in M & (7) \\ B(p,q,0,1) \geq E(c,q) - E(c,p) & \forall c \in C, p,q \in M^* & (8) \\ B(p,q,1,0) \geq E(c,p) - E(c,q) & \forall c \in C, p,q \in M^* & (9) \\ B(p,q,1,1) \geq E(c,p) + E(c,q) - 1 & \forall c \in C, p,q \in M^* & (10) \\ B(p,q,0,1) + B(p,q,1,0) + B(p,q,1,1) \leq 2 & \forall p,q \in M^* & (11) \end{array}$

Single cell tumor phylogeny

max $\sum \sum \log w(c, m)$, subject to (12) $c \in C$ $m \in M$ $F(c,m) = E(c,m^+) - \sum E(c,m_i^-) \ \forall c \in C, m \in M$ (13) $w(c,m) = \overline{(1-\alpha)F(c,m) + \beta(1-F(c,m))}$ if l(c,m) = 1(14)if l(c,m) = 0 $w(c,m) = \alpha F(c,m) + (1-\beta)(1-F(c,m))$ (15) $B(p,q,0,1) \ge E(c,q) - E(c,p)$ $\forall c \in C, p, q \in M^*$ (16) $B(p, q, 1, 0) \ge E(c, p) - E(c, q)$ $\forall c \in C, p, q \in M^*$ (17) $B(p,q,1,1) \ge E(c,p) + E(c,q) - 1$ $\forall c \in C, p, q \in M^*$ (18) $B(p,q,0,1) + B(p,q,1,0) + B(p,q,1,1) \le 2$ $\forall p, a \in M^*$ (19) $B(\cdot, \cdot, \cdot, \cdot), F(\cdot, \cdot), E(\cdot, \cdot) \in \{0, 1\}$

Approaches

 Persistent Phylogeny (Ciccolella et al., BMC Bioinformatics, 2020)

ILP

Also Dollo(k)

SASC — Simulated Annealing

The simulated annealing idea

- Start from a phylogeny T
- **2** Tweak T to obtain T_1
- **3** Accept T_1 if it is better than T
- 4 Accept T_1 with probability p it is worse than T
- 5 Rinse and repeat

Probability p

- decreases with time
- smaller when T and T₁ are different

Tweak 1: Prune and Reattach

Tweak 2: Swap node labels

Gianluca Della Vedova Computational Aspects of Models of Evolution

Tweak 3: Add a deletion

Gianluca Della Vedova Computational Aspects of Models of Evolution

Tweak 4: Remove a deletion

Results

Data

Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Chung et al., Nature Communications, 2017.

⊃aper

Ciccolella et al., Inferring Cancer Progression from Single-cell Sequencing while Allowing Mutation Losses, Bioinformatics, 2020.

Problems

- Find a Persistent Phylogeny with minimum number of backmutations in polynomial time
- 2 Efficiently compute a Persistent Phylogeny explaining a set of samples
- **3** Efficiently compute a Dollo(k) Phylogeny explaining a set of samples
- Compare different phylogenies
- 5 Amalgamate different phylogenies

BIAS — Bioinformatics and Experimental Algorithmics THANKS!

https://www.algolab.eu

Thanks to

- Giulia Bernardini
- Paola Bonizzoni
- Simone Ciccolella
- Luca Denti
- Iman Hajirasouliha
- Murray Patterson
- Marco Previtali
- Camir Ricketts
- Dana Silverbush
- Mauricio Soto
- Raffaella Rizzi

Attributions

Some material has been taken from:

- Trevor Pugh (https://bioinformatics.ca/workshops/2016/ bioinformatics-cancer-genomics-2016)
- "File:Simplex-method-3-dimensions.png" by User:Sdo is marked with CC BY-SA 3.0.

This work is licensed under a Creative Commons "Attribution 4.0 International" license.

