
1

Timed running wheel

Clara Hartmann1, Yves Thönnes and Mahesh M. Karnani1

1Department of Integrative Neurophysiology
Center for Neurogenomics and Cognitive Research
Vrije Universiteit Amsterdam

De Boelelaan 1085
1081 HV Amsterdam

The Netherlands

General description

The following build instructions are for a timed-access running wheel using cost-effective off-the-shelf

components, useful for behavioural neuroscience experiments on rodents (Figure 1). It is controlled

by a Raspberry Pi computer that logs degrees of rotation and can stop the wheel using a servomotor

break, according to a user-defined Python script. Our example code saves data in a small .csv file

containing a list of time stamps (at 5 s precision using the PiGPIO library1) for wheel movement

availability, the ensuing first wheel movement and total rotations until the wheel is stopped. A user

with beginner skills in Python programming can easily modify the code. The wheel can be easily

implemented in a home cage or behavioural setup, as only 150*150 mm floor space and a 10 mm

diameter hole are required to pass the cable through.

Figure 1, Picture of the timed running wheel.

2

Materials

Table 1, Bill of materials for the timed running wheel.

Part Count
or
length

Supplier/manufacturer Serial # or *.stl file Approximate
cost, EUR

Arduino nano 1 Arduino A000005 19.9

Raspberry Pi 400/4B 1 Raspberry Pi KW-2646 45 – 95

Servo motor (mounting
screws and hub
attachment included)

1 Master 1556176 - 62 28

Rotary encoder 1 Nidec Copal
Electronics

REC16B50-201 20.7

5V power supply 1 RS Pro 124-2183 11.5

4-core shielded cable 2000
mm

Lapp 0034304 1

‘flying saucer’ running
wheel for small rodents

1 Ware pet products #03281 7

3-d printed base 1 base.stl 1

3-d printed cover 1 cover.stl 1

Rubber tubing 5mm ID/
7mm OD

20
mm

RS Pro 235-4806 1

Female to female
jumper wire connectors

4 MikroElectronika MIKROE-511 4.3

Male to male jumper
wire connectors

4 MikroElectronika MIKROE-513 4.3

Breadboard 1 Bud industries BB-32650-B 3.1

 Approx. total cost: 140.4-197.8 EUR

Useful tools: small adjustable wrench, small Phillips head screw driver, wire cutters, soldering iron,

superglue.

Mechanical assembly

A plastic 130 mm diameter wheel is removed from a commercially available (e.g., ‘flying saucer’)

rodent running wheel. The shaft of a rotary encoder (Nidec Copal Electronics REC16B50-201) is fitted

with a necessary amount of rubber tubing (typically a 20mm long piece of 5mm ID 7mm OD tubing is

sufficient) to achieve a tight push-fit on the wheel’s axis. 3-D printed parts are found here 2 or in the

supporting files and print well on a Prusa MK3 PLA printer. The rotary encoder without the wheel is

mounted in the 3-D printed enclosure base (base.stl) along with the 180 deg servomotor (Master servo

DS6020 C1689) which acts as the break (see Figure 2 for mounting geometry). A mounting nut and

screws are supplied with the components. The supplied short hub of the servo is used, fitted with a

soft piece of rubber or foam (e.g., a 20 mm piece of rubber tubing) to dampen contact with the wheel’s

axis. At this point the wiring should be completed in order to check functionality (see Electronics).

After checking function and correct angle of the servo arm (see Adjustment) the servo and rotary

encoder and covered with the second level of the enclosure (cover.stl). Lastly the wheel is fitted in

place by pushing it onto the encoder’s axis, making sure that the wheel can move freely and there is

3

no friction between the rubber tubing and the enclosure. Superglue can be used to adhere the two

parts (base.stl and cover.stl) of the enclosure to each other.

Figure 2, Component mounting geometry. Figure 3, Wiring diagram.

Electronics

A 2 m length of four-core shielded cable is used to connect both the rotary encoder (Nidec Copal

Electronics REC16B50-201; 2 leads and ground on pins 2,5 and 6) and 180 deg servomotor (Master

servo DS6020 C1689; 2 leads and ground) to a Raspberry Pi, breadboard mounted Arduino Nano and

separate 5V DC source (servo). See Figure 3 for connections.

It is important to hide the cable from the rodents. It can be passed through a hole drilled in the floor

of the behavioural box below the running wheel, or a square shaped hole can be made in the wall and

the built-in cable guide pushed through it.

Code and software set up

An Arduino board is set up to the servo break and a Raspberry Pi to read out and log the rotations.

One can set up the software and code following these steps:

1) On the Raspberry Pi (we have used models 400 and 4b) with the operating system installed

(Raspberry Pi OS, released 21-02-2023), Arduino IDE (version 1.8.19) is used to install the

Servo library.

2) The Arduino code wheel_only_ard_nano.ino is downloaded from the supporting files or 3 and

flashed to the Arduino Nano. Arduino Uno and Mega boards also work.

3) For setting up Python (Python 3.9.2 is preinstalled on the Raspberry Pi OS), Pandas and Numpy

libraries are first installed via the terminal (e.g. sudo pip3 install numpy and sudo

pip3 install pandas). The requirements.pip file is downloaded from 4 or supporting files

of this document. After navigating in terminal to the folder containing the requirements.pip

file, all listed requirements are installed by typing pip3 install -r requirements.pip.

4) The helper script Running_wheel_functions.py and the main script Generic_wheel_only.py are

downloaded from the supporting files or 4 and placed in the same folder.

https://github.com/MaheshKarnani/Switch_maze/blob/main/Modules_SM/SensingWaterDispenser/generic_lick_sensor_arduino_nano/generic_lick_sensor_arduino_nano.ino

4

5) The PiGPIO daemon is launched from the terminal (sudo pigpiod).

6) Now the main script can be run via the terminal or an IDE (we use Thonny Python IDE).

Adjustments

The helper script Running_wheel_functions.py can be used to change parameters like how long the
wheel should remain open and closed, and where data is stored.
The movement arc of the servo is typically correct with the settings in the sample Arduino code, such

that a rubber/foam attachment on the servo arm gently but firmly bends against the axis of the wheel,

stopping its rotation. If this is not the case, the angle of the servo in the break and open position must

be changed empirically either in the Arduino code lines 8-9 or by manually reinstalling the servo hub

at a different angle.

References

1. joan2937/pigpio. https://github.com/joan2937/pigpio.
2. MaheshKarnani. TimedRunningWheel_3Dparts.
https://github.com/MaheshKarnani/Switch_maze/tree/main/Modules_SM/TimedRunningWheel/pa
rts_3d_print (2023).
3. MaheshKarnani. Switch_maze_wheel_only_ard.
https://github.com/MaheshKarnani/Switch_maze/tree/main/Modules_SM/TimedRunningWheel/w
heel_only_ard_nano (2023).
4. MaheshKarnani. Switch_maze_wheel_only.
https://github.com/MaheshKarnani/Switch_maze/tree/main/Modules_SM/TimedRunningWheel
(2023).

